跳转至

Golang编码规范之指导原则04

Golang编码规范之指导原则04

一 不要使用 panic

在生产环境中运行的代码必须避免出现 panic。panic 是 级联失败 的主要根源 。如果发生错误,该函数必须返回错误,并允许调用方决定如何处理它。

  • Bad
func run(args []string) {
  if len(args) == 0 {
    panic("an argument is required")
  }
  // ...
}

func main() {
  run(os.Args[1:])
}
  • Good
func run(args []string) error {
  if len(args) == 0 {
    return errors.New("an argument is required")
  }
  // ...
  return nil
}

func main() {
  if err := run(os.Args[1:]); err != nil {
    fmt.Fprintln(os.Stderr, err)
    os.Exit(1)
  }
}

panic/recover 不是错误处理策略。仅当发生不可恢复的事情(例如:nil 引用)时,程序才必须 panic。程序初始化是一个例外:程序启动时应使程序中止的不良情况可能会引起 panic。

var _statusTemplate = template.Must(template.New("name").Parse("_statusHTML"))

即使在测试代码中,也优先使用t.Fatal或者t.FailNow而不是 panic 来确保失败被标记。

  • Bad
// func TestFoo(t *testing.T)

f, err := ioutil.TempFile("", "test")
if err != nil {
  panic("failed to set up test")
}
  • Good
// func TestFoo(t *testing.T)

f, err := ioutil.TempFile("", "test")
if err != nil {
  t.Fatal("failed to set up test")
}

二 使用使用 atomic

使用 sync/atomic 包的原子操作对原始类型 (int32, int64等)进行操作,因为很容易忘记使用原子操作来读取或修改变量。

go.uber.org/atomic 通过隐藏基础类型为这些操作增加了类型安全性。此外,它包括一个方便的atomic.Bool类型。

  • Bad
type foo struct {
  running int32  // atomic
}

func (f* foo) start() {
  if atomic.SwapInt32(&f.running, 1) == 1 {
     // already running…
     return
  }
  // start the Foo
}

func (f *foo) isRunning() bool {
  return f.running == 1  // race!
}
  • Good
type foo struct {
  running atomic.Bool
}

func (f *foo) start() {
  if f.running.Swap(true) {
     // already running…
     return
  }
  // start the Foo
}

func (f *foo) isRunning() bool {
  return f.running.Load()
}

三 避免可变全局变量

使用选择依赖注入方式避免改变全局变量。 既适用于函数指针又适用于其他值类型

  • Bad
// sign.go
var _timeNow = time.Now
func sign(msg string) string {
  now := _timeNow()
  return signWithTime(msg, now)
}

// sign_test.go
func TestSign(t *testing.T) {
  oldTimeNow := _timeNow
  _timeNow = func() time.Time {
    return someFixedTime
  }
  defer func() { _timeNow = oldTimeNow }()
  assert.Equal(t, want, sign(give))
}
  • Good
// sign.go
type signer struct {
  now func() time.Time
}
func newSigner() *signer {
  return &signer{
    now: time.Now,
  }
}
func (s *signer) Sign(msg string) string {
  now := s.now()
  return signWithTime(msg, now)
}

// sign_test.go
func TestSigner(t *testing.T) {
  s := newSigner()
  s.now = func() time.Time {
    return someFixedTime
  }
  assert.Equal(t, want, s.Sign(give))
}

四 避免在公共结构中嵌入类型

这些嵌入的类型泄漏实现细节、禁止类型演化和模糊的文档。

假设您使用共享的 AbstractList 实现了多种列表类型,请避免在具体的列表实现中嵌入 AbstractList。 相反,只需手动将方法写入具体的列表,该列表将委托给抽象列表。

type AbstractList struct {}
// 添加将实体添加到列表中。
func (l *AbstractList) Add(e Entity) {
  // ...
}
// 移除从列表中移除实体。
func (l *AbstractList) Remove(e Entity) {
  // ...
}
  • Bad
// ConcreteList 是一个实体列表。
type ConcreteList struct {
  *AbstractList
}
  • Good
// ConcreteList 是一个实体列表。
type ConcreteList struct {
  list *AbstractList
}
// 添加将实体添加到列表中。
func (l *ConcreteList) Add(e Entity) {
  l.list.Add(e)
}
// 移除从列表中移除实体。
func (l *ConcreteList) Remove(e Entity) {
  l.list.Remove(e)
}

Go 允许 类型嵌入 作为继承和组合之间的折衷。外部类型获取嵌入类型的方法的隐式副本。默认情况下,这些方法委托给嵌入实例的同一方法。

结构还获得与类型同名的字段。 所以,如果嵌入的类型是 public,那么字段是 public。为了保持向后兼容性,外部类型的每个未来版本都必须保留嵌入类型。

很少需要嵌入类型。 这是一种方便,可以帮助您避免编写冗长的委托方法。

即使嵌入兼容的抽象列表 interface,而不是结构体,这将为开发人员提供更大的灵活性来改变未来,但仍然泄露了具体列表使用抽象实现的细节。

  • Bad
// AbstractList 是各种实体列表的通用实现。
type AbstractList interface {
  Add(Entity)
  Remove(Entity)
}
// ConcreteList 是一个实体列表。
type ConcreteList struct {
  AbstractList
}
  • Good
// ConcreteList 是一个实体列表。
type ConcreteList struct {
  list AbstractList
}
// 添加将实体添加到列表中。
func (l *ConcreteList) Add(e Entity) {
  l.list.Add(e)
}
// 移除从列表中移除实体。
func (l *ConcreteList) Remove(e Entity) {
  l.list.Remove(e)
}

无论是使用嵌入结构还是嵌入接口,都会限制类型的演化。

  • 向嵌入接口添加方法是一个破坏性的改变。
  • 从嵌入结构体删除方法是一个破坏性改变。
  • 删除嵌入类型是一个破坏性的改变。
  • 即使使用满足相同接口的类型替换嵌入类型,也是一个破坏性的改变。

尽管编写这些委托方法是乏味的,但是额外的工作隐藏了实现细节,留下了更多的更改机会,还消除了在文档中发现完整列表接口的间接性操作。